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Abstract Some thirty years ago Fishburn, Niemi, Richelson, Riker and Straf-
fin published first systematic comparisons of voting procedures using several
criteria of systems performance. Still today Richelson’s set of criteria – and
his list of voting systems – is perhaps the most extensive in the literature.
Some of the criteria, notably monotonicity and the Condorcet criteria, intro-
duced by these authors still play a central role in the present day treatises
on voting systems. This paper discusses the relevance of performance crite-
ria and various paradoxes to the choice of voting systems. We first outline a
procedure whereby the criteria could be systematically utilized. This is anal-
ogous to a wide class of multi-criterion choice problems. Apart from relatively
trivial settings, this procedure leaves many problems open. These, in turn,
seem to depend on context-related considerations. Moreover, it is argued that
individual preference rankings may not be most appropriate way to approach
voting systems: cyclic individual preferences sometimes make perfect sense
and often people are capable of much more refined opinion expression than
preference ranking.

1.1 Introduction

The first systematic comparisons of voting procedures appeared in the 1970’s.
The journal Behavioral Science became a major forum for these early publi-
cations. Especially notable are the article by Peter C. Fishburn (1971) and a
series of works by Jeffrey T. Richelson. This series culminated in a summary
(Richelson 1979) that is perhaps the most extensive of its kind in terms of
both the number of systems and the number of criteria. These were followed
by a book-length treatise by Philip D. Straffin, Jr (1980) and perhaps most
notably by William H. Riker’s (1982) magnum opus. While these texts ex-
plicitly dealt with voting systems, they were preceded and inspired by several
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path-breaking works in the more general field of social choice functions, e.g.
(Fishburn 1973), (Fishburn 1977) and (Young 1975). The history of voting
procedures had also been discussed in Black (1958) and Riker (1961). The
wider public was first made aware of the theory of comparative voting sys-
tems by an article in Scientific American written jointly by Richard G. Niemi
and Riker (1976).

From those early years on there has been a relatively clear distinction
between theoretical and applied works. Fishburn, Richelson and Young are
obviously theoretical scholars, while Riker and Straffin had a more applied
focus. Indeed, Riker (1982) can be seen as an attempt to justify a specific
theory of democracy by invoking theoretical results achieved in social choice
theory. More specifically, Riker argues that since

• all known voting procedures have at least one serious flaw,
• voting equilibria are extremely rare in multidimensional spatial voting

models, and
• strategic manipulation opportunities are ubiquitous,

it is erroneous to equate voting results with the “will of the people” or ex-
pressions of collective opinion for the reason that the latter is a meaningless
notion. Hence, defining democracy as a system ruled in accordance with the
will of the people is indefensible. His favorite – liberal – view of democracy,
on the other hand, is immune to the negative results of social choice theory
because it does not require more of a voting – or, more generally, ruling –
system than that it enables the voters to get rid of undesired rulers. For
this purpose, continues the argument, the plurality rule is a particularly apt
instrument.

Riker’s view is thought-provoking. Many authors, while accepting its
premises based on social choice theory, have questioned the conclusions
(Lagerspetz 2004; Mackie 2003; Nurmi 1984; Nurmi 1987). This paper dwells
on the premises and their significance for voting system design. We shall
first outline the standard view which looks at various voting systems and
evaluates them in terms of criteria of performance. This approach in essence
deems all systems satisfying a given criterion of performance as equivalent
and those which don’t also equivalent. Starting from the 1960’s a rich litera-
ture on probability and simulation modeling of voting systems performance
has emerged to give a somewhat more nuanced picture (Klahr 1966; Niemi
& Weisberg 1972). We shall discuss the nature and relevance of these results.
We then deal with the intuitive difficulty of devising examples of various cri-
terion violations and discuss whether this should play a role in voting system
evaluations. Finally, we shall scrutinize the “givens” of the theory used in the
evaluation.
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1.2 The standard approach

The motivation for introducing a new voting system or criticizing an old one
is often a counterintuitive or unexpected voting outcome. A case in point is
Borda’s memoir where he criticized the plurality voting and suggested his
own method of marks (McLean & Urken 1995). With time this approach
focusing on a specific flaw of a system has given way to studies dealing with
a multitude of systems and their properties. An example of such studies (e.g.
Nurmi 2002, 36; Nurmi 2006, 136-137) is summarized in Table 1.1.

Criterion
Voting system a b c d e f g h

Amendment 1 1 1 1 0 0 0 0

Copeland 1 1 1 1 1 0 0 0
Dodgson 1 0 1 0 1 0 0 0

Max-min 1 0 1 1 1 0 0 0

Kemeny 1 1 1 1 1 0 0 0
Plurality 0 0 1 1 1 1 0 1

Borda 0 1 0 1 1 1 0 1
Approval 0 0 0 1 0 1 0 1
Black 1 1 1 1 1 0 0 0

Pl. runoff 0 1 1 0 1 0 0 0
Nanson 1 1 1 0 1 0 0 0
Alternative vote 0 1 1 0 1 0 0 0

Table 1.1 A Comparison of voting procedures

Here criterion a denotes the Condorcet winner criterion, b the Condorcet
loser one, c strong Condorcet criterion, d monotonicity, e Pareto, f consis-
tency, g independence of irrelevant alternatives and h invulnerability to the
no-show paradox. A “1” (“0”, respectively) in the table means that the sys-
tem represented by the row satisfies (violates) the criterion represented by
the column.

The systems are viewed as choice rather than preference functions. This
distinction makes a difference especially in the case of the Kemeny rule. As
a preference function it is consistent (Young & Levenglick 1978), but as a
choice rule it isn’t.1 It will be recalled that choice functions map preference
profiles into subsets of alternatives. Denoting by Φ the set of all preference
profiles and by A the set of alternatives, we thus have

1 I am grateful to Dan Felsenthal for calling my attention to the apparent discrepancy

between Young and Levenglick’s claim that the Kemeny rule satisfies both the Condorcet
winner criterion and consistency, and Fishburn’s demonstration that the rule is not con-
sistent.
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f : Φ→ 2A

for social choice functions.
Preference functions, in contradistinction, map preference profiles into

rankings over alternatives (cf. social welfare functions). I.e.

F : Φ→ R

where R denotes the set of all preference rankings over A.
Consider now a partition of a set N of individuals with preference profile φ

into two separate sets of individuals N1 and N2 with corresponding profiles φ1
and φ2 over A and assume that f(φ1∩φ2) 6= ∅. The social choice function f is
consistent iff f(φ1 ∩φ2) = f(φ), for all partitionings of the set of individuals.

The same definition can be applied to social preference functions. F is
consistent iff whenever F (φ1)∩F (φ2) 6= ∅ implies that F (φ1)∩F (φ2) = F (φ).

It turns out that, like all Condorcet extensions, Kemeny’s rule is an in-
consistent social choice function. An example is provided by Fishburn (1977,
484). However, as a preference function it is consistent, i.e. whenever two dis-
tinct subsets of individuals come up with some common preference rankings,
these common rankings must also be the result when the sub-profiles are
put together. Young’s result that all Condorcet extensions are inconsistent is
visible in Table 1.1 where all those systems with a 1 in column a have a 0 in
column f. The satisfaction of the Condorcet winner criterion is, however, just
a sufficient, not necessary, condition for inconsistency: plurality runoff and
Hare’s system fail on both the Condorcet winner criterion and on consistency.

Of particular interest in Table 1.1 is column h, the invulnerability to the
no-show paradox. One of the main motivations for elections is to get an idea
of voter preferences. Systems that are vulnerable to the no-show paradox are
at least prima facie incompatible with this motivation. It has been shown by
Moulin (1988) and Pérez (1995) that all Condorcet extensions are vulnerable
to the no-show paradox and, indeed, as shown by Pérez (2001), most of them
to the strong version thereof whereby by abstaining a group of voters may
get their first-ranked alternative elected, while some other alternatives would
be elected if they would vote according to their preferences.

At first sight, monotonicity is closely related to invulnerability to the no-
show paradox. On closer scrutiny the situation gets more nuanced. Firstly,
among monotonic systems there are both systems that are vulnerable to the
no-show paradox and those that are not (see e.g. Nurmi 2002, 103). In other
words, monotonicity does not imply invulnerability to the no-show paradox.
By Moulin’s result all monotonic Condorcet extensions – e.g. Copeland’s and
Kemeny’s methods – are vulnerable to the no-show paradox. More obviously,
monotonicity does not imply vulnerability either since e.g. the plurality rule
is both monotonic and invulnerable to the paradox. The same is true of
the Borda count. But what about non-monotonicity? Does it imply vulner-
ability? Again Moulin’s result instructs us that non-monotonic Condorcet
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extensions – e.g. Dodgson’s and Nanson’s methods – are vulnerable. So are
plurality runoff and alternative vote. Indeed, in Table 1.1 all non-monotonic
systems are vulnerable to the no-show paradox. Campbell and Kelly (2002)
have shown, however, that this is not the case in general, i.e. there are non-
monotonic systems that are invulnerable to the no-show paradox. These are,
however, either non-anonymous or non-neutral (or both). Hence, within the
class of anonymous and neutral procedures we get the following table (Ta-
ble 1.2).

monotonic non-monotonic

vulnerable Copeland plurality runoff

invulnerable Borda empty

Table 1.2 Monotonicity and vulnerability to no-show paradox among anonymous and
neutral systems: examples

1.3 Standard approach and system choice

Table 1.1 gives a summary information of some criteria and systems. To
justify a “1” in the table one has to show that the criterion represented by
the column is under no profile violated by the system represented by the row.
To justify a “0” requires no more than an example where the system violates
the criterion. This information may be useful in choosing a voting system.
Suppose that one is primarily interested in only one criterion, say Condorcet
winning. Then one’s favorite systems are those with a “1” in column a. This
in itself sensible way of proceeding leaves, however, one with many systems.
So, we need additional considerations to narrow the choice down.

A more “graded” approach to comparing two systems with respect to one
criterion has also been suggested (Nurmi 1991; see also Lagerspetz 2004).
The superiority of system A with respect to system B takes on degrees from
strongest to weakest as follows:

1. A satisfies the criterion, while B doesn’t, i.e. there are profiles where B
violates the criterion, but such profiles do not exist for A.

2. in every profile where A violates the criterion, also B does, but not vice
versa.

3. in practically all profiles where A violates the criterion, also B does, but
not vice versa (“A dominates B almost everywhere”).

4. in a plausible probability model B violates the criterion with higher prob-
ability than A.

5. in those political cultures that we are interested in, B violates the criterion
with higher frequency than A.
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We shall return to items 4 and 5 in the next section. Comparing systems
with respect to just one criterion is, however, not plausible since criteria tend
to be contested not only among the practitioners devising voting systems,
but also within the scholarly community. Suppose instead that one takes a
more holistic view of Table 1.1 and gives some consideration to all criteria.
A binary relation of dominance could then be defined as follows:

Definition 1. A system A (strictly) dominates system B in terms of a set of
criteria, if and only if whenever B satisfies a criterion, so does A, but not the
other way around.2

In Table 1.1 e.g. Kemeny’s rule dominates all other systems except
Copeland, Black, plurality, Borda and approval voting. Regardless of what
relative weights one assigns to various criteria, it seems natural to focus on
the undominated systems. Thus in Table 1.1 one is left with the six systems
just mentioned.

But all criteria are not of equal importance. Nor are they unrelated. To wit,
if a system always ends up with the Condorcet winner, i.e. satisfies criterion
a, it also elects the strong Condorcet winner, that is, satisfies criterion c.
It is also known that the Condorcet winner criterion is incompatible with
consistency (Young 1974a, Young 1974b). Some criteria seem to be context-
related in the sense that they lose their practical relevance in some specific
contexts. E.g. one could argue that consistency has no practical bearing on
committee decisions since the results are always determined by counting the
entire set of ballots. This observation notwithstanding, there is a more subtle
argument one can build against the standard approach: the finding that a
criterion is not satisfied by a system tells us very little – in fact nothing –
about the likelihood of violation. For that we need to focus on the likelihood
of “problematic” profiles since these – together with choice rules – determine
the outcomes. It is when we compare the outcomes with the profiles that we
find out whether a criterion violation has occurred.

1.4 How often are criteria violated?

To find out how often a given system violates a criterion – say, elects a Con-
dorcet loser – one has to know how often various preference profiles occur
and how these are mapped into voting strategies by voters. Once we know
these two things, we can apply the system to the voting strategy n-tuples
(if the number of voters is n), determine the outcomes, and, finally, compare
these with the preference profile to find out whether the choices dictated by

2 A referee suggests a more general version: “To whatever degree B satisfies a criterion,

A satisfies it to at least the same degree, but not the other way around.” Since we are

primarily dealing with dichotomous criteria, we shall use the less general version.
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the criterion contradict those resulting from the profile, e.g. if an eventual
Condorcet loser was chosen. Traditionally, two methods have been resorted
to in estimating the frequency of criterion violations: (i) probability model-
ing, and (ii) computer simulations. Both are based on generating artificial
electorates and calculating how frequently the criterion is violated or some
other incompatibility encountered in these electorates.

The literature on probability and computer simulations is vast (see e.g.
Gehrlein 1997; Gehrlein 2002; Gehrlein 2006; Gehrlein & Lepelley 2004; Le-
pelley 1993; Merlin et al. 2000; Saari & Tataru 1999). Of particular interest
has been the occurrence of cyclic majorities. The early models were based
on the impartial culture (IC) assumption. Under it each voter is randomly
and independently assigned to a preference ranking over alternatives. So, the
voters are treated as random samples – with replacement – from a uniform
distribution over all preference rankings. The method devised by Gehrlein
and Fishburn (1978) is useful in deriving limit probabilities when the num-
ber of voters increases. IC is a variation of the principle of insufficient reason:
since we cannot know which preference profiles will emerge in the future,
we assume that all individual preference relations are purely random in the
sense that each individual’s preference relation is independently drawn from
a uniform distribution of preferences over all possible preference rankings.
Like all versions of the principle of insufficient reason, IC is based on unten-
able epistemology: it is not possible to derive knowledge about probabilities
of rankings from complete ignorance regarding those probabilities. Despite
its implausibility, this assumption could still be made because of its technical
expediency if one could point out that the results based on IC do not deviate
very much from those obtained under other more plausible assumptions. But,
alas, this is not the case: the IC simulations results often differ dramatically
from other simulation results (see e.g. Nurmi 1999).

Regenwetter et al. (2006) strongly criticize the IC assumption by arguing
that it in fact maximizes the probability of majority cycles. Their criticism
aims at playing down the empirical significance of the results that – under the
IC assumption – suggest that the probability of majority cycles is reasonably
high even in the case of just three alternatives. Surely, the fact that the
probability of cycles is estimated at 0.09 in IC’s when the number of voters
approaches infinity and the number of alternatives is 3, does not imply that
the probability of cycles would be of the same order in current, past or future
electorates. What those results literally state is that if the opinions of the
voters resemble IC, then the probability of encountering majority cycles is
as specified. The interest of these estimates is not in their predictive success
in real world, but in their ability to provide information about variables
and parameters that increase or decrease the likelihood of cycles. Probability
models are in general more useful in providing this kind of information. Often
the interest is not so much in the probability estimates themselves but on
their variability under various transformations in the models.
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Consider the studies on Condorcet efficiency of various voting procedures,
i.e. on the probability that the Condorcet winner is chosen by a procedure
under various cultures. Those studies that focus on Condorcet efficiency are
typically reporting the probability of the Condorcet winner being chosen,
provided that such a winner exists in the profile. In other words, these stud-
ies (e.g. Merrill 1984) do not aim at predicting how often Condorcet winners
are elected, but, by focusing instead on just those profiles where a Condorcet
winner exists, help to identify the propensity of various procedures to elect
the Condorcet winner (see also Merrill 1988). Similarly studies reporting the
probability of various systems to come up with Condorcet losers are not pre-
dicting the relative frequency of Condorcet losers being elected in current
elections, but are aiming at disclosing factors, variables or parameters that
increase or decrease such choices under profiles where a Condorcet loser ex-
ists. Yet, the argument of Regenwetter et al. is supported by simulations
where IC assumption is slightly perturbed by assuming that a small minority
of the electorate – say, 5 or 10 per cent of the total – forms a homogeneous
sub-culture of voters with identical preferences while the rest of the electorate
remains an IC. It then turns out that the Condorcet efficiencies of various
systems change quite significantly. More importantly, even the ranking of sys-
tems in terms of Condorcet efficiency can change for some combinations of
alternatives and voters (Nurmi 1992). Similar observation can be made about
differences in choice sets of various systems under IC and small perturbations
thereof. IC seems to be associated with larger discrepancies of systems than
systems where a minuscule group representing identical preferences is im-
mersed in IC (Nurmi 1988; Nurmi 1992).

Despite its tendency to exaggerate Condorcet cycles and dampen Con-
dorcet efficiencies of systems that are not Condorcet extensions, IC may be
a useful construct in illuminating the differences of voting rules. By estimat-
ing the likelihood that two rules make overlapping choices in IC’s we get a
profile-neutral view of how far apart they are as choice intuitions. For exam-
ple, IC simulations suggest – unsurprisingly – that two Condorcet extensions,
Copeland’s rule and max-min method (also known as Simpson’s method), are
relatively close to each other in the sense of resulting rarely in distinct choice
sets. More interesting is the finding that the Borda count is nearly as close to
Copeland’s rule as the max-min method is (Nurmi 1988). This is consistent
with the relatively high Condorcet efficiency of the Borda count reported in
several studies (e.g. Merrill 1984; Nurmi 1988). As is well-known, the Borda
scores of alternatives can be computed from the outranking matrix by taking
row sums. This binary implementation of the Borda count already hints that,
despite its positional nature, the method is reasonably close to the idea that
the winners be detected through binary comparisons.

The criticism of IC has so far not produced many alternative culture as-
sumptions. Perhaps the most widespread among the alternative assumptions
is that of impartial anonymous culture (IAC). Consider an electorate of n
voters considering the set of k alternatives. The number of rankings of alter-
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natives is then k!. Let ni denote the number of voters with i’th preference
ranking (i = 1, . . . , k!). Each anonymous profile can be represented by list-
ing the ni’s. The profile satisfies anonymity since transferring j voters from
ns to nt when accompanied with transferring j voters from nt to ns leaves
the distribution of voters over preference ranking unchanged. In IAC’s ev-
ery distribution of voters over preference rankings is assumed to be equally
probable. This changes the Condorcet efficiency as well as Borda paradox
estimates by increasing the former and decreasing the latter (Gehrlein 1997;
Gehrlein 2002).

Is IAC then more realistic than IC? Both IC and IAC are poor proxies
of political electorates. Given any election result it is inconceivable that the
profile emerging in the next election would, with equal probability, be any
distribution of voters over preference rankings. The same is true of commit-
tees and other bodies making several consecutive collective choices. There is
in general far more interdependence between voters than suggested by IAC.
Indeed, it can argued (Nurmi 1988a) that in reconstructing the profile trans-
formation over time, one should distinguish two mechanisms: (i) one that
determines the initial profile, and (ii) one which determines the changes from
one time instant (ballot) to the next. Both IC and IAC collapse these two
into one mechanism that generates each voting situation de novo. This is
certainly not the way in which everyday experience suggests that opinion
distributions are formed. If it were, the electoral campaigns would take on
heretofore unknown forms: the distinctions between core constituencies and
moving voters would vanish as would that between government and opposi-
tion etc. So, it seems that everyday observations fly in the face of IC, IAC
and many other models used in generating voter profiles. This does not play
down the importance of those models as theoretical tools, i.e. in enhancing
our understanding of the mechanisms increasing or decreasing the occurrence
of various paradoxes, incompatibilities or discrepancies related to voting sys-
tems. Nevertheless, to render choice theoretic results more relevant for the
evaluation of voting rules, one should bring the incompatibility results closer
to practice by finding out what the problematic profiles look like, i.e. what
kinds of opinion distributions underly them. If it is very difficult to envision
how those profiles would emerge in practice, then arguably the corresponding
incompatibility results do not have much practical importance.

1.5 Counterexamples are sometimes difficult to come by

Summaries like Table 1.1 provide information that is of somewhat asymmet-
ric nature. To prove that a system is incompatible with a criterion one needs
to find a profile where – under the assumed mechanism concerning voting
behavior – the system leads to a choice that is not consistent with the range
of choices allowed for by the criterion. To find such a profile when, theoreti-
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cally, one should exist, is, however, not always easy. At the behest of and in
cooperation with Dan S. Felsenthal the present author embarked upon look-
ing for examples illustrating the incompatibility of the Condorcet winning
criterion and invulnerability to the no-show, truncation and twin paradoxes.
The background of this search is the result proven by Moulin (1988) and sub-
sequently strengthened by Pérez (2001) saying that all Condorcet extensions
are vulnerable to the no-show paradox. In the subsections that follow these
incompatibilities are illustrated for some well-known Condorcet extensions
(for fuller discussion, see Felsenthal 2010).

1.5.1 Black’s procedure

Black’ procedure is vulnerable to the no-show paradox, indeed, to the strong
version thereof. This is illustrated in Table 1.3.

1 voter 1 voter 1 voter 1 voter 1 voter
D E C D E

E A D E B

A C E B A
B B A C D

C D B A C

Table 1.3 Black’s system is vulnerable to strong no-show paradox

Here D is the Condorcet winner and, hence, is elected by Black.
Suppose now that the right-most voter abstains. Then the Condorcet win-

ner disappears and E emerges as the Borda winner. It is thus elected by
Black. E is the first-ranked alternative of the abstainer. Hence we have a
strong version of the paradox.

Truncation paradox is closely related to the no-show one. It occurs when-
ever a group of individuals gets a better outcome by revealing only part of
their preference ranking rather than their full ranking. Obviously, not voting
at all is an extreme version of truncation and thus the above can be used
to show that Black is also vulnerable to truncation. If more specific demon-
stration is needed, then one might consider the modification of the above
example whereby the right-most voter truncates his preference after A, i.e.
does not express any view regarding C and D. Then, the Condorcet winner
again disappears and the Borda winner E emerges as the Black winner. Again
the strong version of the truncation paradox emerges.
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1.5.2 Nanson’s method

Nanson’s Borda-elimination procedure is vulnerable to the strong version of
no-show paradox as well as Table 1.4 illustrates.3 Here Nanson’s method
results in B.

5 voters 5 voters 6 voters 1 voter 2 voters
A B C C C

B C A B B

D D D A D
C A B D A

Table 1.4 Nanson’s method is vulnerable to strong no-show paradox

If one of the right-most two voters abstain, C – their favorite – wins. Again
the strong version of no-show paradox appears.

The twin paradox occurs whenever a voter is better off if one or several
individuals, with identical preferences to those of the voter, abstain. In Ta-
ble 1.4 we have an instance of the twin paradox as well: if there is only one
CBDA voter, C wins. If he is joined by another, B wins.

Nanson is also vulnerable to truncation: if the 2 right-most voters indicated
only their first rank, C would win (not B).

1.5.3 Dodgson’s method

42 voters 26 voters 21 voters 11 voters
B A E E

A E D A

C C B B
D B A D

E D C C

Table 1.5 Dodgson’s method is vulnerable to no-show and twin paradoxes

In Table 1.5, A is closest to becoming the Condorcet winner, i.e. it is the
Dodgson winner.4

3 This subsection is partly based on the author’s correspondence with Dan S. Felsenthal
on May 25, 2001.
4 This example is an adaptation of one given by Fishburn (1977, 478).
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Now take 20 out the 21 voter group out. Then B becomes the Condorcet
and, thus, Dodgson winner. B is preferred to A by the abstainers, demonstrat-
ing Dodgson’s vulnerability to the no-show paradox. Adding those 20 “twins”
back to retrieve the original profile shows that Dodgson is also vulnerable to
the twin paradox.

1.5.4 Pareto violations, no-show and twin paradoxes
of Schwartz

As will be recalled, the Pareto condition states: if everybody strictly prefers
x to y, then y is not chosen. Schwartz’s method violates this condition as
shown in Table 1.6.

1 voter 1 voter 1 voter
A D B

B C D

D A C
C B A

Table 1.6 Schwartz’s method violates the Pareto condition

Table 1.6 exhibits a top cycle: A � B � D � C � A. Hence this is the
choice set of Schwartz. Yet, C is Pareto dominated by D.

To find out whether Schwartz is vulnerable to the no-show paradox we have
to make assumptions regarding the risk-posture of voters. If they are assumed
to be risk-averse, then the following example demonstrates the vulnerability
of Schwartz to both no-show and twin paradoxes.

23 voters 28 voters 49 voters

A B C

B C A
C A B

Table 1.7 Schwartz’s method is vulnerable to no-show and twin paradoxes if voters are

risk-averse

In Table 1.7 the Schwartz choice set is A,B,C. With 4 voters from the
BCA voters abstaining, C becomes the Condorcet – and thus Schwartz –
winner. Starting from the 96-voter profile and adding BCA voters one by
one, we can demonstrate the twin paradox.
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In case of risk-neutral voters, we can demonstrate these paradoxes through
the profile of Table 1.8:

23 voters 28 voters 49 voters

A B C

B C D
D D A

C A B

Table 1.8 Schwartz’s method and risk-neutral voters

Here the Schwartz (GOCHA) choice set is A,B,C,D. With 4 voters of the
BCDA group abstaining, C again becomes the Condorcet winner and is thus
elected. This shows the no show paradox. The twin paradox emerges when
one starts with the 96-voter profile and adds BCDA voters one by one as
above.

1.5.5 Max-min rule

The max-min rule is also vulnerable to no show, truncation and twin para-
doxes. Table 1.9 illustrating this is an adaptation of Pérez (1995).

5 voters 4 voters 3 voters 3 voters 4 voters

D B A A C

B C D D A
C A C B B

A D B C D

Table 1.9 Max-min method is vulnerable to no show, truncation and twin paradoxes

The outranking matrix of the Table 1.9 profile is in Table 1.10.

A B C D row min

A - 10 6 14 6

B 9 - 12 8 8

C 13 7 - 8 7
D 5 11 11 - 5

Table 1.10 Outranking matrix of Table 1.9
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Thus, B is elected. However, with the 4 CABD voters abstaining, the
outcome would be A. With only 1 CABD voter added to the 15-voter profile,
A is still elected. If one then adds 3 “twins” of the CABD voter, one ends up
with B being elected. Hence twins are not welcome. If those 4 voters reveal
their first preference only, the minimum entry in B’s row drops to 4 and C
emerges as the winner. Hence the truncation paradox. This outcome assumes
that winners are determined on the basis of minimum support in pairwise
comparisons. If a voter does not reveal his preference between x and y, he
gives no votes to either one in the corresponding pairwise comparison. This
is in line with Brams (1982) who first introduced the notion of preference
truncation. Of course, other interpretations can be envisaged.

1.5.6 Young fails on no show and twin paradoxes

Young’s method is a Condorcet extension that looks for the largest subset of
voters which contains a Condorcet winner and elects the Condorcet winner
of that subset of voters. Being a Condorcet extension, Young’s rule is also
vulnerable to the no show and twin paradoxes as illustrated by Table 1.11.
The illustration is again inspired by and adapted from Pérez (2001) and
Moulin (1988):

11 10 10 2 2 2 1 1

B E A E E C D A

A C C C D B C B
D B D D C A B D

E D B B B D A E
C A E A A E E C

Table 1.11 Young’s method is vulnerable to no show and twin paradoxes

In this profile E is elected (needs only 12 removals). Add now 10 voters with
ranking EDABC. This makes D the Condorcet winner. Hence, the 10 added
voters are better off abstaining. Indeed we have an instance of the strong
version of the no show paradox. Obviously, twins are not always welcome
here.

1.5.7 Kemeny fails on no show and twin paradoxes

The example of subsection 1.5.5 is applicable here. In the 15-voter profile
(the four left-most groups of voters), the Kemeny-ranking is DBCA. Now add
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4 voters with DABC ranking. A now becomes the Condorcet and Kemeny
winner. Hence these four voters are better off not voting.

The twin paradox occurs when we start with the 15-voter profile adding
voters one by one until the winner changes from D to A. The last added voter
is the unwelcome twin.

Counterexamples are, indeed, important in proving incompatibilities of
systems and criteria. However, they vary a great deal in terms of the un-
derlying difficulty of constructing them. The above counterexamples dealing
with the no show paradox and Condorcet extension methods show that even
though a general result – here due to Moulin and Pérez – is known, it is not
necessarily straight-forward to find examples to illustrate the incompatibility.
This suggests that perhaps the compatibility should be viewed as a matter of
degree rather than a dichotomy. In fact, we are here encountering the same
problem as when discussing the relevance of simulation models: how often
are problematic profiles likely to emerge? We just don’t know, but if the dif-
ficulty of finding examples of some incompatibilities – e.g. between Young’s
method and invulnerability to the no show paradox – is anything to go by,
some of the problematic profiles occur only in very specific circumstances.
Hence their practical relevance is limited.

In addition to the empirical frequency of problematic profiles, the rele-
vance of choice theoretic results also hinges upon the acceptability of the
assumptions made in the theory. This is an issue we now turn to.

1.6 Another look at behavioral assumptions

The bulk of social choice theory is based on the assumption that the individ-
uals are endowed with complete and transitive preference relations over the
alternatives. While there are good grounds for making this assumption, it is
not difficult to construct examples where a reasonable individual might not
satisfy it. Consider Table 1.12.

The Dictator of Universities (DU, so far a purely fictitious figure) ponders
upon the evaluation of three universities A, B and C in terms of three criteria:
(i) research output (scholarly publications), (ii) teaching output (degrees),
(iii) external impact (expert assignments, media visibility, R & D projects,
etc.). DU deems these criteria of roughly equal importance in determining
the future funding of the universities. His observations are summarized in
Table 1.12.

Since the criteria are of roughly equal importance DU comes up with the
following list of binary preferences: A � B � C � A � . . .. There is nothing
unreasonable in this obviously intransitive preference relation. So, perhaps
we should give some thought on alternative foundations of choice theory.
There are basically two ways to proceed in searching for those foundations:
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criterion (i) criterion (ii) criterion (iii)

A B C
B C A

C A B

Table 1.12 Performance of three universities on three criteria

(i) assume something less demanding, or (ii) something more demanding than
preference rankings.

1.6.1 Asking for less than rankings

It is well-known that Arrow’s focus on social welfare functions was eventually
replaced by apparently less demanding concept of social choice function. In
similar vein, one could replace the notion of complete and transitive individ-
ual preference relation with that of a choice function, i.e. a rule indicating
for each subset of alternatives the set of best alternatives. In Arrovian spirit
one could then look for plausible conditions on methods of aggregating the
individual choice functions into collective ones.

The following would seem plausible conditions on collective choices based
on individual choice functions:

• citizen sovereignty: for any alternative x, there exists a set of individual
choice function values so that x will be elected,

• choice-set monotonicity: if x is elected under some profile of individual
choices, then x should also be elected if more individuals include x in their
individual choices

• neutrality
• anonymity
• choice-set Pareto: if all individuals include x in their individual choice sets,

then the aggregation rule includes x as well , and if no voter includes y in
their individual choice set, then y is not included in the collective choice.

• Chernoff’s condition: if an alternative is among winners in a large set of
alternatives, it should also be among the winners in every subset it belongs
to (Chernoff’s postulate 4, Chernoff 1954, 429).

• Concordance: suppose that the winners in two subsets of alternatives have
some common alternatives. Then the rule is concordant if these common
alternatives are also among the winners in the union of the two subsets
(Chernoff’s postulate 10; Chernoff 1954, 432; Aizerman and Aleskerov
1995, 19-20).

Incompatibilities can also be encountered in this less demanding setting.
To wit, consider two rules for making collective choices. Rule 1: whenever
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an alternative is included in the choice sets of a majority of voters, it will
be elected. Rule 2 (plurality): whichever alternative is included in more nu-
merous choice sets than any other alternative, is elected. Table 1.13 presents
an example of a three-member voting body pondering upon the choice from
{x, y, z}. The individual choice sets as well as those resulting from the ap-
plication of Rule 1 and Rule 2 are indicated (Aizerman and Aleskerov 1995,
237).

alt. set ind. choice sets Rule 1 Rule 2

ind.1 ind. 2 ind. 3
{x, y, z} {x} {z} {y} ∅ {x, y, z}
{x, y} {x} {x} {y} {x} {x}
{x, z} {x} {z} {x} {x} {x}
{y, z} {y} {z} {y} {y} {y}

Table 1.13 Two choice function aggregation rules

Concordance is not satisfied by Rule 1, since x is chosen from {x, y} and
{x, z}, but not from {x, y, z}. Rule 2 fails on Chernoff since z is in the choice
set from {x, y, z}, but from {x, z}. It is also worth noticing that plurality
(Rule 2),but not majority (Rule 1) fails on choice-set monotonicity.

Aggregating choice profiles instead of preference ones is in a way natural
when one is dealing with collective choices rather than rankings. Yet, as we
just saw, incompatibilities between various desiderata can be encountered
here as well. Individual choice functions are less demanding than preference
rankings. All one needs to assume regarding the underlying preference rela-
tions is completeness. A step towards more demanding ways of expressing
preferences is individual preference tournament. Tournaments – it will be re-
called – are complete and asymmetric relations. One could argue that when
the individuals take different properties or aspects of choice options into ac-
count when forming their preference between different pairs of options, the
satisfaction of completeness and asymmetry comes naturally. Yet, transitiv-
ity is less obvious. Tversky’s (1969) experiments with choices involving pairs
of risky prospects illustrate this.

Now, if tournaments instead of rankings or choice functions are taken as
proper descriptions of individual opinions, we have readily at hand several
solution concepts, to wit, the uncovered set, top cycle set, Copeland winners,
the Banks set (Banks 1985; Miller 1995; Moulin 1986). Typically these specify
large subsets of alternatives as winners and are, thus, relatively unhelpful in
settings where single winners are sought. There are basically two ways of
utilizing individual tournament matrices in making collective decisions:

1. Given the individual k × k tournaments, construct the corresponding col-
lective one of the same dimension by inserting 1 to position (i, j) if more
than n/2 individuals have 1 in the (i, j) position. Otherwise, insert 0 to
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this position. The row sums then indicate the Copeland scores. Rows with
sum equal to zero correspond to the Condorcet losers, those with sums
equal to k − 1 to the Condorcet winners. Uncovered and Bank’s sets can
be computed as well (the latter, though, is computationally hard). Also
Dodgson scores can determined.

2. Construct the collective opinion matrix as an outranking matrix where the
entry in the (i, j) position equals the number of individuals with 1 in the
(i, j) position. The row sums then indicate the “Borda scores”. Max-min
scores can also be determined.

So, the concepts of preference aggregation can be re-invoked in tournament
aggregation.

1.6.2 Asking for more than rankings

Another way of responding to social choice incompatibilities is to start from
more, rather than less, demanding notions than individual preference rank-
ings. In fact, this response has a firm foundation in the classic utility theory.
Over the past decade it has been reiterated by several authors. To quote one
them (Hillinger 2005):

... a new ‘paradox of voting’: It is theorists’ fixation on a context dependent and
ordinal preference scale; the most primitive scale imaginable and the mother of all

paradoxes.

The step from complete and transitive preference relations to utility func-
tions representing these functions is short, in fact, in the finite alternative
sets nonexistent. Given the preference relations one can eo ipso construct the
corresponding utility functions. These might then be used in preference ag-
gregation. Since the cardinal utilities thereby obtained are unique up to affine
transformations, one can transform all utility functions into the same scale by
restricting the range of values assigned to each alternative. The utility values
can, then, be used in defining social choice functions in many ways. Hillinger
(2005) suggests the following. Let Pi be a strict preference relation of voter i
and let Pi assign the set of candidates into disjoint subsets A1, . . . , AK ,K ≥ 1
such that the voter is indifferent between candidates in the same subset and
strictly prefers ai ∈ Ai to candidate aj ∈ Aj iff i > j. K is given indepen-
dently of the number of candidates. For a given K, the voter is asked to
assign to each candidate one of the numbers x0, x0 + 1, . . . , x0 +K − 1. The
utilitarian voting winner is the alternative with the largest arithmetic mean
or sum of assigned numbers.

This method simply sums up the scores – or utilities expressed in the
[x0, x0 + k − 1] interval – to determine the winning candidate or ranking
of the candidates. Now this method has many names. Riker (1982) calls it
Bentham’s method, Hillinger the utilitarian or evaluative voting and Warren
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D. Smith the range voting. It is worth pointing out that the cumulative voting
method whereby each voter can freely allocate a fixed stock of votes to various
candidates, is not equivalent to utilitarian voting, although somewhat similar
in spirit to the latter.

The just mentioned methods invoke a new criterion of performance: the
maximization of collective utility. What is then maximized is the sum of
utilities assigned to an alternative by all voters. Summation is, of course,
just one possible way of handling the utilities. In addition to various non-
anonymous (weighted) methods of summation, one could also maximize the
product of the utility values. Riker calls this Nash’s method with an obvious
reference to the Nash product in bargaining theory.

The most recent entrant in the class of systems dealt with in this subsec-
tion is the majoritarian judgment introduced and elaborated by Balinski and
Laraki (2007). It works as follows:

1. each voter gives each candidate an ordinal grade (e.g. poor, medium, good,
excellent)

2. the median grade of each candidate is determined
3. the winner is the candidate with the highest median grade
4. a specific tie-breaking rule is defined

Felsenthal and Machover (2008) have given an evaluation of the majoritar-
ian judgment in terms of criteria applied in the ordinal social choice frame-
work. The result is a typical mixture of good and bad showings. To summarize
their evaluation: the majoritarian judgment does satisfy the Chernoff prop-
erty, it is monotonic and is immune to cloning. These are undoubtedly desir-
able properties. In contrast to these, the system is inconsistent, vulnerable
to the no-show paradox and may result in a Condorcet loser.

The evaluation shows that the ordinal choice theory criteria can be applied
to voting systems that utilize richer information about voter opinions than
just the ranking of candidates. However, one could ask whether the evalua-
tion based solely on criteria borrowed from the ranking environment misses
something relevant, viz. the fact that these systems are devised to attain
goals (such as maximizing social welfare) that cannot be expressed in terms
of ordinal concepts only. If this is the case, then at least some of the eval-
uation criteria should be specific to systems based on aggregating cardinal
utilities. For example a person resorting to utilitarian voting might not be
at all worried if the method fails on Condorcet winner criterion as long as
it maximizes the sum of expressed utilities. Much work remains to be done
in devising non-trivial criteria for such more specific evaluations. Until they
have been invented, the best we can do is to proceed in the manner suggested
by Felsenthal and Machover (2008).
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1.7 Concluding remarks

The most significant results of social choice theory pertain to compatibilities
of various choice desiderata. Some of these take the form of proving the incom-
patibility of various properties of choice rules, others do the same for specific
choice rules and voting procedures. The choice of the best rule is complicated
by the sheer number of desiderata that one intuitively would like to see ful-
filled, but even within relatively small subsets of important choice criteria one
typically finds no procedure that would satisfy them all. Even dominance re-
lations between procedures are uncommon. Since the procedures are intended
for use in future collective decision making contexts, their success in avoiding
anomalies of paradoxes is highly contingent upon encountering problematic
preference profiles. Probability models and simulations have often been re-
sorted to in order to obtain estimates about the theoretical frequencies of
problematic profiles. This approach can be complemented by another one
focusing on the difficulty of finding counterexamples showing various incom-
patibilities. Arguably it is only by looking at the structure or details of the
problematic profiles that one can obtain information about their likelihood
in practice. In the preceding we have also briefly touched upon alternative
foundations of choice theory. Some of them require more information from the
individuals, others less than the ordinal ranking approach. Setting up useful
criteria for analyzing systems aggregating this new type of information is still
largely to be done.
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